Discrete Dubins Paths
نویسندگان
چکیده
A Dubins path is a shortest path with bounded curvature. The seminal result in nonholonomic motion planning is that (in the absence of obstacles) a Dubins path consists either from a circular arc followed by a segment followed by another arc, or from three circular arcs [Dubins, 1957]. Dubins original proof uses advanced calculus; later, Dubins result was reproved using control theory techniques [Reeds and Shepp, 1990], [Sussmann and Tang, 1991], [Boissonnat, Cérézo, and Leblond, 1994]. We introduce and study a discrete analogue of curvature-constrained motion. We show that shortest “bounded-curvature” polygonal paths have the same structure as Dubins paths. The properties of Dubins paths follow from our results as a limiting case—this gives a new, “discrete” proof of Dubins result.
منابع مشابه
On Polygonal Paths with Bounded Discrete-Curvature: The Inflection-Free Case
A shortest path joining two specified endpoint configurations that is constrained to have mean curvature at most ς on every non-zero length sub-path is called a ς-geodesic. A seminal result in non-holonomic motion planning is that (in the absence of obstacles) a 1-geodesic consists of either (i) a (unit-radius) circular arc followed by a straight segment followed by another circular arc, or (ii...
متن کاملImplementing Dubins Airplane Paths on Fixed-wing UAVs
A well known path-planning technique for mobile robots or planar aerial vehicles is to use Dubins paths, which are minimum-distance paths between two configurations subject to the constraints of the Dubins car model. An extension of this method to a three-dimensional Dubins airplane model has recently been proposed. This chapter builds on that work showing a complete architecture for implementi...
متن کاملDifferential Geometric Path Planning of Multiple UAVs
Safe and simultaneous arrival of constant speed, constant altitude unmanned air vehicles (UAVs) on target is solved by design of paths of equal lengths. The starting point for our solution is the well-known Dubins path, which is composed of circular arc and line segments, thus requiring only one simple maneuver—constant rate turn. An explicit bound can be imposed on the rate during the design a...
متن کاملGeometric Modeling of Dubins Airplane Movement and its Metric
The time-optimal trajectory for an airplane from some starting point to some final point is studied by many authors. Here, we consider the extension of robot planer motion of Dubins model in three dimensional spaces. In this model, the system has independent bounded control over both the altitude velocity and the turning rate of airplane movement in a non-obstacle space. Here, in this paper a g...
متن کاملAsymptotic constant-factor approximation algorithm for the Traveling Salesperson Problem for Dubins' vehicle
This article proposes the first known algorithm that achieves a constant-factor approximation of the minimum length tour for a Dubins’ vehicle through n points on the plane. By Dubins’ vehicle, we mean a vehicle constrained to move at constant speed along paths with bounded curvature without reversing direction. For this version of the classic Traveling Salesperson Problem, our algorithm closes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1211.2365 شماره
صفحات -
تاریخ انتشار 2012